Type:
Journal
Description:
Plasmonic response of the metallic structure characterized by sub-nanometer dielectric gaps can be strongly affected by nonlocal or quantum effects. In this paper, we investigate these effects in spherical Na and Au nanomatryoshka structures with sub-nanometer core-shell separation. We use the state-of-the-art quantum hydrodynamic theory (QHT) to study both near-field and far-field optical properties of these systems: results are compared with the classical local response approximation (LRA), Thomas–Fermi hydrodynamic theory (TF–HT), and the reference time-dependent density functional theory (TD–DFT). We find that the results obtained using the QHT method are in a very good agreement with TD–DFT calculations, whereas other LRA and TF–HT significantly overestimate the field-enhancements. Thus, the QHT approach efficiently and accurately describes microscopic details of multiscale plasmonic …
Publisher:
Optical Society of America
Publication date:
25 Jun 2018
Biblio References:
Volume: 26 Issue: 13 Pages: 17322-17334
Origin:
Optics express