-A A +A
We assess several generalized gradient approximations (GGAs) and Laplacian-level meta-GGAs (LL-MGGA) kinetic energy (KE) functionals for orbital-free density functional theory calculations of bulk metals and semiconductors, considering equilibrium distances, bulk moduli, total and kinetic energies, and the electron densities. We also considered the effects of the pseudopotentials, the vacancy formation energies, and the bond lengths of molecular dimers. We found that LL-MGGA KE functionals are distinctively superior to GGA functionals, showing the importance of the Laplacian of the density in the functional construction. We extended the recently developed Pauli–Gaussian second-order and Laplacian (PGSL) functional ( J. Phys. Chem. Lett. 2018, 9, 4385, DOI: 10.1021/acs.jpclett.8b01926) including high-order corrections, achieving higher transferability and accuracy than conventional nonlocal functionals …
American Chemical Society
Publication date: 
9 Apr 2019

Lucian A Constantin, Eduardo Fabiano, Fabio Della Sala

Biblio References: 
Volume: 15 Issue: 5 Pages: 3044-3055
Journal of chemical theory and computation