-A A +A
The modeling of optical spectra of plasmonic nanoparticles via first-principles approaches is computationally expensive; thus, methods with high accuracy/computational cost ratio are required. Here, we show that the Time-Dependent Density Functional Theory (TDDFT) approach can be strongly simplified if only one s-type function per atom is employed in the auxiliary basis set, with a properly optimized exponent. This approach (named TDDFT-as, for auxiliary s-type) predicts excitation energies for silver nanoparticles with different sizes and shapes with an average error of only 12 meV compared to reference TDDFT calculations. The TDDFT-as approach resembles tight-binding approximation schemes for the linear-response treatment, but for the atomic transition charges, which are here computed exactly (i.e., without approximation from population analysis). We found that the exact computation of the atomic …
Publication date: 
1 Jan 2020

Giulia. Giannone, Fabio Della Sala

Biblio References: 
J. Chem. Phys.