Type:
Book
Description:
Falling down is one of the main causes of trauma, disability and death among older people. Inertial sensors and accelerometer-based devices are able to detect falls in controlled environments. The aim of this work is the development of a computationally low-cost algorithm for feature extraction and the implementation of a machine learning scheme for detection of fall events in the elderly, by using the 3-axial MEMS wearable wireless accelerometer. The proposed approach allows to generalize the detection of fall events in several practical conditions, after a short period of calibration. It appears invariant to age, weight, height of people and relative positioning area (even in the upper part of the waist), overcoming the drawbacks of well-known threshold-based approaches in which several parameters need to be manually estimated according to the specific features of the end user. The supervised clustering …
Publisher:
Springer, Cham
Publication date:
1 Jan 2014
Biblio References:
Pages: 295-299
Origin:
Sensors and Microsystems